Deep brain optogenetics without intracranial surgery

Chen R*, Gore F*, Nguyen QA, Ramakrishnan C, Patel S, Kim SH, Raffiee M, Kim YS, Hsueh B, Krook-Magnusson E, Soltesz I, Deisseroth K

Nat Biotechnol. 2021 Feb;39(2):161-164. doi: 10.1038/s41587-020-0679-9. Epub 2020 Oct 5.

https://www.nature.com/articles/s41587-020-0679-9

Achieving temporally precise, noninvasive control over specific neural cell types in the deep brain would advance the study of nervous system function. Here we use the potent channelrhodopsin ChRmine to achieve transcranial photoactivation of defined neural circuits, including midbrain and brainstem structures, at unprecedented depths of up to 7 mm with millisecond precision. Using systemic viral delivery of ChRmine, we demonstrate behavioral modulation without surgery, enabling implant-free deep brain optogenetics.

Previous
Previous

Molecular tools for identifying seizure active neurons

Next
Next

Review: Micro-Macro features of seizure networks